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The nature of the flow during impulsive spin-down to rest in a cylindrical cavity is 
studied experimentally. Flow visualization using reflective flakes and laser-Doppler 
velocimetry are the tools of this investigation. The velocimeter is configured to 
measure simultaneously the azimuthal velocity component at two arbitrarily 
separated locations within the cylinder. The Ekman number is about and the 
flow is unstable. The mean angular velocity decreases non-uniformly and mono- 
tonically. The velocity fluctuation amplitudes and frequencies decrease steadily. A 
novel data analysis is used to study the velocity fluctuations, which are neither 
stationary nor uniform. The assumptions of this analysis are the validity of Taylor’s 
hypothesis of frozen-eddy transport and the ergodicity of the process following that 
rescaling. The fluctuations are equally dominant during all phases of the spin-down 
process when scaled with the current mean velocity. The root-mean-squared 
intensity measurements in the core ( r /R  < 0.4) suggest an r-l dependence while a 
uniform value is observed in the buffer region (0.4 < r /R < 0.8). Flow visualizations 
and spatial velocity correlations indicate that the flow in the core consists of vortices 
having axes parallel to the rotation axis and extending throughout the height of the 
cylinder. The power spectra of the velocity fluctuations, after amplitude scaling with 
the current mean velocity and Taylor’s scaling in time, suggest a -2.6 power 
dependence on the wavenumber k.  The flow in the latter phases tends to a single 
vortex. 

1. Introduction 
1.1. General remarks 

The flow field of concentrated vorticity in a viscous fluid is characterized by a global 
rotation and a finer scale turbulence riding on it if the Reynolds number is 
sufficiently high. An important question is how the turbulence and the mean flow 
interact. If we start from the hypothesis that large eddies are also slow dissipation 
engines, then the question of interaction can be more precisely stated. As the mean 
flow slows down, how does the turbulence accommodate itself to the varying flow 
conditions ? Can viscosity dissipate energy fast enough so that the remaining 
turbulence is in equilibrium with the mean flow ? If there exists a critical condition 
separating a regime where the turbulence cannot be accommodated by the mean 
flow, then how is the excess energy handled? In particular, is the energy expelled 
from the domain or is it lumped into vortical islands within the flow field ? We might 
be at  a disadvantage in seeking answers to these questions through studies of natural 
phenomena for those flows are likely to be in equilibrium. We must disturb those 
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equilibria and observe the subsequent behaviour to look for answers. Nevertheless, 
there are some naturally occurring transient phenomena that are likely to present 
opportunities for studies of the interaction between the mean flow and the 
turbulence. In  this category we may list intense atmospheric vortices where 
disturbances brought about by local phenomena give rise to such transient vortices. 
Along these lines, Scorer (1966) proposes that a rotating fluid mass should tend to a 
concentrated vortex if stirred. Gough & Lynden-Bell (1968) found evidence 
supporting Scorer’s hypothesis while, a t  the same time, Bretherton & Turner (1968) 
argue that there is no clear evidence either for or against it. Ibbetson & Tritton 
(1975) and Hopfinger, Browand & Gagne (1982) discuss two experiments on 
turbulence in rotating flows. 

Ibbetson & Tritton’s (1975) experiment is on the effect of rotation on decaying 
turbulence. Conclusions from the experiment are that rotation increases the decay 
rate of the turbulence in general and that the probable mechanism is the transfer of 
energy by inertial waves to  the walls where it is dissipated in viscous boundary 
layers. Transfer of energy between wavenumbers plays a much less significant role in 
the dynamics of decay than in a non-rotating fluid. The decay rate of velocity 
fluctuations, both parallel and perpendicular to the rotation axis, remain closely 
coupled. Rotation produces a marked increase in the integral lengthscale parallel to 
the rotation axis. Hopfinger et al. (1982) studied the effect of rotation on a turbulent 
flow field produced by an oscillating grid in a rotating tank. Near the grid the 
turbulence is relatively unaffected by rotation. Farther from the grid, fluctuation 
amplitudes decrease, turbulent scales increase and, hence, rotation becomes 
important. Above the Ekman boundary layer, the flow field changes substantially, 
and remains independent of the depth thereafter. The flow there consists of 
concentrated vortices having axes parallel to the rotation axis, which extend 
throughout the depth of the container. Additionally, the vortex cores support waves 
(Maxworthy, Hopfinger & Redekopp 1985). 

A flow where some of these ideas may be explored further experimentally is that  
of a fluid during impulsive spin-down to rest in a cylindrical container. Our attention 
is on the nature of the mean flow and the velocity fluctuations associated with it. 
Flow visualization and velocimetry are our tools in this experiment. 

1.2. Nature of spin-down to rest 

Consider a closed cylinder of diameter 2R and height H together with its fluid of 
kinematic viscosity v, both rotating like a solid body at an initial angular velocity Q,. 
The Ekman number Ei = v/Q, R2 is small (equivalently, the Reynolds number Re, = 
QiR2/v is large). At time t = 0, the container is abruptly stopped. During the next 
few radians of rotation of the core, thin axially symmetric Bodewadt boundary 
layers are established on the end disks (Bodewadt 1940). The thickness of these 
boundary layers is uniform and about 5[v/Q(t)]t, where Q ( t )  is the slowly varying 
angular velocity in the core. The quasi-steady uniform ejection (Ekman pumping) 
over these disk boundary layers induces a slow axial flow and a corresponding radial 
outward motion in the core. The flow at the central plane of the cylinder looks much 
like that of an axially symmetric stagnation flow with swirl. The fluid, pushed out of 
the core a t  the central plane where the incoming axial streams collide, is returned to 
the Bodewadt boundary layers over the cylindrical wall. Hence, toroidal circulation 
cells are set up in the cavity. 

The flow is unstable except at rather low Reynolds numbers. A critical Reynolds 
number Rei3 cr for the flow during spin-down to rest in a cylinder can be estimated by 
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considering separately the respective critical values for the flows over the concave 
wall and the end disks. Neitzel (1982), using energy theory, suggest Re,,,, x 140 as 
a lower bound for the stability of the flow over the cylindrical surface. Mathis & 
Neitzel (1985) determine experimentally the critical Reynolds number to be about 
Re,, cr x 350 for the onset of the Taylor-Gortler vortices over the convave wall in a 
long cylinder ( H / 2 R  = 9.35). The critical Reynolds number for the flow over a 
stationary disk in rotating flow is about Re,,,, x 625 (Savaq 1987). Therefore, the 
stability of the flow in the cylinder as a whole is determined by the stability of the 
flow over the concave wall. Hence, the overall flow should have a critical Reynolds 
number of Re,, cr = 52, R2/v x 350 (E,, cr x 3 x lop3), set by the flow over the concave 
wall for aspect ratios of H/2R of unity and higher. In steady rotation over an infinite 
disk, the boundary layer is turbulent (Savaq 1987). At sufficiently high Reynolds 
numbers, the flow over an end disk during impulsive spin-down to rest approximates 
that in steady rotation over an infinite disk, and is turbulent. The flow over the 
curved wall is characterized by the appearance of the Taylor-Gortler vortices within 
a few radians of revolution after the cylinder is stopped. These develop into a more 
complicated pattern and ultimately decay as spin-down is achieved (Greenspan 
1968 ; Euteneuer 1972). These wall instabilities, the turbulent fluid convected 
through the Boewadt boundary layers, and the inertial waves transmitted within the 
rotating core give rise to flow velocity histories which appear to have the familiar 
characteristics of conventional turbulent flows. Our interest here is in the nature of 
these unsteady velocity histories in the cylinder, excluding the regions immediately 
over the concave wall and the end disks. 

A working model of the flow which can predict the mean flow as well as the 
fluctuations during spin-down to rest in a cylinder is currently unavailable. The 
condition of axisymmetry imposed in their numerical experiments restricts Neitzel 
&, Davis' (1981) results to the region over the concave wall in the cylindrical cavity. 
As an extension of Wedemeyer's (1964) model for the impulsive spin-up from rest, 
Weidman (1976a, b)  has obtained the algebraic expression for the impulsive spin- 
down to rest: 

for the core flow, where s is the dimensionless time defined as 

s = 0.69(2R/H) EiQ,  t ,  (2) 

and the flow is assumed to remain laminar. The same result is also reported by 
Krymov & Manin (1986). We discuss below (1) as a model for the mean flow during 
spin-down to rest. 

2. Experimental set-up and instrumentation 
2.1. Flow apparatus 

The rotating cylinder flow apparatus described in Savaq (1987) is used for velocity 
measurements in this experiment. The apparatus consists of a glass cylinder with an 
internal diameter 2R of 21.74 cm and height-to-diameter ratio H / 2 R  of 1.0 embedded 
in a 40 cm glass cubical aquarium (figure 1 a). The working fluid is toluene (density 
p = 0.87 g/cm3 and kinematic viscosity v = 0.0067 cm2/s at 23 "C) and fills both the 
cylindrical cavity and that between the cylinder and the surrounding cube. The fluid 
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FIGURE 1 (a ,b) .  For caption see facing page. 

inside the cylinder is seeded with 2 pm diameter uniform glass microspheres for laser- 
Doppler velocimetry. The particle number density is about 10' particles/cm3. The 
index of refraction of toluene is 1.49 and that of the glass wall of the cylinder 1.47. 
This close match of the indices considerably reduces the aberration problem caused 
by the cylindrical surface during optical probing into the cavity. Additionally, the 
low kinematic viscosity of toluene makes low Ekman numbers E, = v/SZ, R2 possible 
a t  relatively low initial container speeds SZ,. Flow visualizations are done in water in 
a lucite cylinder with a diameter of 21.3 cm and a diameter-to-height ratio of 1.0. The 
flow field is made visible by using reflective aluminium flakes in suspension (Savag 
1985). I n  the flow visualization experiments, the initial rotation speed SZ, is increased 
to 9.77rad/s to match the Ekman number Ei= 9 ~ 1 0 - ~  for the velocity 
measurements made in toluene a t  52, = 2n rad/s. During flow visualization, the table 
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FIGURE 1. Experimental arrangements. (a) Overlay of the optical arrangement. Note that the blue 
probe and the cylinder assembly may be moved independently in the ( r ,  2)-plane with respect to the 
green probe. Hence Az and Az may be independently set in the cylinder. ( b )  Plan view of the optical 
probes. The probes are in the (z,z)-plane. (c) Measurement domain: D, green probe and 4, blue 
probe. Connected pairs correspond to the flows discussed in figures 8 and 9. 

rotation and the camera triggers are coordinated by a computer. Of the sequences 
taken, here we present in figure 2 flows at dimensionless time s = 0.5 (cf. (1) and (2)). 
The deceleration of the turntable assembly is about 40 rad/s2. The deceleration time 
of the cylinder is about two orders of magnitude smaller than the timescale of the 
flow [0.69 (2R/H)EfQi]-1 predicted in (2), hence the spin-down process is impulsive 
in the experiments described here. 

The centre of the cylindrical cavity is taken as the origin of the right-handed 
reference systems (figures 1 b and 1 c ) .  Both Cartesian (x, y, z )  and cylindrical ( r ,  8, z )  
coordinate systems are used. The z-axis in both coincides with the rotation axis of the 
cylinder. The x-axis is chosen in the direction of the propagation vector of the green 
beam. The radial coordinate r measures the distance from the rotation axis and the 
azimuthal coordinate 8 measures the angle from the x-axis. The components of the 
velocity vector u in the respective coordinate systems are (u, v, w) and (u7, u,, w). The 
separation of the two velocity probes is indicated by (Ax, Az) in figure 1 (a ) .  

2.2. Velocimetry 
The measurements are made with a two-component dual-beam laser-Doppler 
velocimeter (LDV) shown in figure 1 ( a ) .  The green and the blue light beams from an 
argon ion laser (with respective wavelengths of 514.5 and 488.0nm) are used for 
probing the flow. The transmitting optics assembly for the green beam is fixed and 
that for the blue beam is mounted on a two-dimensional traverse system as sketched 
in figure 1 ( a ) .  This arrangement enables the blue optics to move along the z- and x- 
axes. Thus, the green and the blue probes can be positioned arbitrarily relative to 
each other in the (2, y)-plane. The two probes can be positioned at  the same point in 
the cylinder. This combination of the probes and the three-dimensional traverse 
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FIGURE 2(a) .  For caption see page 537. 

mechanism on which the rotating flow apparatus is mounted makes spatial velocity 
correlation calculations possible. Signals are collected from the probe volumes a t  
about 10" to  the incident beams and focused on the photomultiplier tubes of the 
receiving optics assemblies. All velocity measurements are made in the (z, y)-plane 
(y = 0 plane). In  this study only the azimuthal velocity component w (or equivalently, 
ue) is measured (figure 1 b ) .  

Signal conditioning and counting are done using Thermal System Inc. TSI-1990 
hardware. Data acquisition and processing are done by a computer. The free running 
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FIQURE 2 ( b ) .  For caption see page 537. 

data rates of the two counters are a t  least an order of magnitude higher than the 
sampling rate. The sampling rate is controlled by a preset counter. Sampling cycles 
are initiated by the counter and the elapsed times between successive samples are 
recorded independently by the hardware for construction of velocity time histories. 
A typical experiment starts after the cylinder assembly has been rotating at  a 
constant speed for about 30 min. Numerous preliminary runs indicated the necessity 
of such a long spin-up time to allow the inertial oscillations to subside and the 
contents of the cylinder to reach solid-body rotation. Once steady state is reached, 
the data acquisition sequence is started. The time t = 0 mark from the servo amplifier 
starts the actual data acquisition. A transient data record lasts 1 to 3 min. 

3. Flows 
3.1. Scope of experiments 

The subject matter is the nature of the flow in the core during impulsive spin-down 
to rest. Most of the measurements are carried out in the interior of the fluid covering 
a radial range of r /R < 0.9 and the vertical range of -0.48 < z / H  < 0.48. No 
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FIQURE 2 ( c ) .  For caption see facing page. 

detailed measurements are made over the curved wall where Taylor-Gortler vortices 
are likely to  be dominant. An experimental study of the boundary layers over the 
disks may be found in Savag (1987). Measurements are presented for two nominal 
initial angular velocities of Qi = 7c rad/s (Ei = 1.8 x and a, = 27c rad/s (E, = 

9 x of the cylinder. Velocity data are taken along seven lines (rays) in the (5, 

2)-plane (alternatively, ( T ,  2)-plane). These lines or rays are a t  angles of 0" (Ax = 
7.4 cm, Az = 0), 24.2" (Ax = 7.4 cm, Az = 3.3 cm), 47.5" (Ax = 7.4 cm, Az = 8.0 cm), 
62.2" (Ax = 7.4 cm, Az = 13.9 cm), and 90" (Ax = 0, Az = 5.4 and 10.8 cm) with 
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FIGURE 2. Flow visualization during spin-down to rest. Photographs are taken in a 21.3 cm 
diameter lucite cylinder with a diameter-to-height ratio 2RIH of 1. Flow field is made visible using 
reflective aluminium flakes in water. The initial rotation rate D, is increased to 9.77 rad/s to match 
the Ekman number El = u/OlR2 of 9 x  for the velocity measurements made in toluene a t  
Q, = 2n: rad/s. All pictures are taken at t = 25 s (s = 0.5). (a) Taylor-Proudman columns in 
meridional cross-section. Sheet of laser light is illuminating from the right and passing through the 
cylinder axis. Note that the light intensity is attenuated due to the flake suspension and the radial 
distance is distorted due to the lens effect of the cylinder. (b) Tayior-Proudman columns in 
diametral cross-section. Sheet of laser light is at the midplane of the cylinder and perpendicular to 
the axis. Pu'ote tha t  the focusing of the light sheet partially compensates for its attenuation in the 
flake suspension, at the expense of observable field of view. The arrows point to large axially 
aligned vortices. (c) Taylor-Gortler vortices over the concave wall under diffuse illumination in 
dense flake suspension. The visible depth is about 3 mm. ( d )  End view over the disk under diffuse 
illumination in dense flake suspension. The visible depth is about 3 mm. The circled regions are 
thought to be the footprints of vortices similar to those marked in figure 2 ( b ) .  

respect to the horizontal axis (figure 1 a, c).  The intended angles were 0, (22.5"), in 
( 4 5 O ) ,  in ( G O O ) ,  and in (90") radians. The slip is due to a computer programming error. 
The locations of the green and blue probes are arranged such that the measurement 
points (probe volumes) are approximately on the desired ray. Measurements are 
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made at seven configurations on each of the 0', 24.2', and 47.5" rays and a t  three 
configurations on the 62.2' ray. In addition, further measurements are done on each 
of the three vertical lines (parallel to the rotation axis) a t  radial locations r /R of 0.16, 
0.53, and 0.91 (figure 1 c).  For each configuration, experiments are repeated usually 
three times for each initial rotation speed. One set of data is recorded a t  constant 
speed (nrad/s) a t  each probe configuration to verify the probe location through 
velocity measurements in solid-body rotation. The data sampling rate is 5 Hz for 
a, = n rad/s and 10 Hz for 52, = 2n rad/s. The free-running data rates of the 
counters are at least an order of magnitude higher than the sampling rates used 
during measurements. The measurements on the three vertical rays are repeated at 
a 20 Hz sampling rate for a, = I[: rad/s and 40 Hz for 0, = 2n rad/s. 

3.2. Flow visualization 
Figure 2 shows some flow visualization pictures taken in the lucite cylinder during 
spin-down to rest. The flow field is made visible by using reflective aluminium flakes 
in water. All pictures are taken a t  the initial Ekman number of Ei = v/52,R2 = 
9 x corresponding to the flow in the toluene filled glass cylinder at SZ, = 2n rad/s. 
The initial rotation rate 52, is increased to 9.77 rad/s to match the Ekman number. 
The pictures are taken a t  t = 25 s which corresponds to the dimensionless time of 
s = 0.5 (equation (2)). The photograph in figure 2 (a )  is a meridional cross-section and 
that in figure 2(b) a diametral one. The aluminium-flake number density is low 
enough to allow the illumination of the entire cross-section, yet high enough for 
continuous light reflection off the flakes. In  these two pictures, the light beam of the 
argon-ion laser is expanded to a sheet of about 1.5 mm thick for illumination. In  
figure 2 (a) ,  about 90 YO of the meridional plane is visible, and in figure 2 ( b ) ,  the laser 
sheet is being focused in the cylinder. The flake suspension, however dilute, 
attenuates the intensity of the light sheet as it propagates through the cylinder. The 
photographs in figures 2 (c) and 2 ( d )  are taken under diffuse illumination. The flake 
number density is more than an order of magnitude higher than that in figures 2 ( a )  
and 2(b). The visible depth is about 3 mm in both pictures. They essentially reveal 
the flow in the immediate vicinity of the transparent walls. 

The picture in figure 2 (a)  shows that the flow in the core is fundamentally different 
than that at the perimeter. The long bands of light strips extend almost from disk 
to disk maintaining their alignment with the axis, barring some undulations. The 
cross-sectional view in figure 2 ( b )  verifies the different nature of the flows in the core 
and a t  the perimeter. The flow in the core consists of large vortices aligned with the 
rotation axis of the cylinder. The flakes align themselves along the stream surfaces 
when subjected to sufficient shear. Since the flow in the core is mostly aligned with 
the cylinder axis, the flakes tend to align with their normal perpendicular to the 
rotation axis and, therefore, to the observation direction in figure 2 (b).  Consequently, 
the visualization is inherently poor and the core region looks darker. Even within this 
faint light field, the signatures of the vortices seen in figure 2(a) are identifiable in 
figure 2(b), where two large vortices are marked with white arrows. The flow a t  the 
perimeter is reminiscent of developed three-dimensional turbulence. 

Figure 2 (c) shows the signature of the flow over the concave wall of the cylinder. 
The flow consists mostly of azimuthal turbulent vortices. Their lateral spacing 
continually increases as the flow matures. The evolution of these Taylor-Gortler 
vortices is studied in detail by Euteneuer (1972), Neitzel & Davis (1981), and Mathis 
& Neitzel (1985). The pictures in figure 2(a+) suggest that the flow has two 
substantially different regions : the core which consists of vortices aligned with the 
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FIQURE 3. Measured transient velocity signals (solid lines) and theoretical mean flows (dashed lines, 
from equation (1)) during spin-down to rest ; upper traces for a, = 2% rad/s end lower traces for 
52, = R rad/s. (a) Green probe at (5, z )  = ( -  3.76 cm, 0) and (b) blue probe at (5, z )  = (3.57 cm, 0). 

rotation axis, and the perimeter which consists of azimuthal vortices enveloping the 
core. The structures in the core resemble Taylor-Proudman columns and those at the 
perimeter are akin to Taylor-Gortler vortices. 

The signature of the flow on the disk is shown in figure 2 ( d ) .  The picture shows 
mostly Type I1 waves (Class A) with patches of intense turbulence. The footprints 
of vortices similar to those marked in figure 2 ( b )  are not readily identifiable on the 
figure. However, we speculate that the circled regions are the footprints of axial 
vortices. We base our speculation on the notion that the axial vortices create locally 
finer scale turbulence because of their lower intrinsic Ekman numbers (equivalently, 
higher Reynolds numbers) due to the locally higher angular velocities at their cores. 
Note that the photographs in figures 2 ( b )  and 2 ( d )  are not simultaneous owing to the 
nature of the visualization technique used here. We return below to the question of 
signature on the disk in connection with the formation of a single vortex during the 
final phase of the flow. 

3.3. Flows 
Figure 3 shows sample velocity measurements at Q, = n and 2n rad/s. The traces are 
simultaneous in pairs of green and blue. The unsteady velocity traces v( t )  
(equivalently, u,(t)) illustrate the turbulent nature of the spin-down process at the 
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low Ekman numbers of the experiment. The predictions of ( 1 )  are shown as the 
dashed lines over the traces in the figure. Evidently, that prediction is successful if 
all that is needed is a timescale of the transient mean flow. That the prediction does 
not follow the measurements more closely is expected. The assumption behind (1)  is 
that  the end disks eject the fluid into the core a t  the rate determined from the 
solution of the laminar Bodewadt flow. The critical Reynolds number of that laminar 
flow is rather low and the boundary layer is almost always turbulent in a flow 
simulating rotating flow over a stationary disk. The turbulent boundary-layer profile 
over the disk, however, shows a close resemblance to its laminar counterpart (Savag 
1987). Perhaps this resemblance of the profiles is the reason for the success of (1) in 
predicting the spin-down timescale. 

Our interest here is in the velocity fluctuations. Clearly, we cannot take the 
difference between the measurements and the prediction of ( 1 )  to determine the 
fluctuations. The remainder of this paper discusses a method of extracting the 
fluctuations and their subsequent interpretation. 

4. Discussion 
4.1. MeanJEow 

A common feature of all the measurements is the onset of strong fluctuations, the 
amplitudes and frequencies of which decay progressively as the flow decelerates. The 
information hidden in those fluctuations is the major concern of this article. An 
acceptable scheme must be devised to extract the fluctuation velocities from the few 
transient velocity histories. The rigorous method is to ensemble-average traces like 
those shown in figure 3 over sufficiently many realizations. In order to get a 
meaningful ensemble average, one needs on the order of hundreds of repetitions of 
the experiment under identical conditions. As stated in $2.2 above, each realization 
requires about 30 min, and such an undertaking is excessively time consuming. The 
scheme used here is to identify a mean flow for each realization and obtain the 
fluctuations by taking the difference between this mean and the measured trace. An 
immediate candidate for the mean flow is the analytical prediction in (1) .  Clearly, 
that is not an acceptable model of the mean flow for this purpose as may be seen in 
figure 3. We choose to fit curves to the data to describe their mean behaviour. A 
spectral curve fitting technique is used here. Thc essence of the scheme is clear from 
the traces in figure 3. The timescale of the jluctuations i s  much smaller than that of the 
transient bulk $ow. Therefore, a suitably chosen low-pass filter should produce an 
adequate fit to describe the mean flow. The velocity histories are reconstructed at  
1024 samples per trace for spectral analysis. Further, the traces are arranged to 
obtain a 4096-sample long periodic signal. An original velocity trace like those shown 
in figure 3 is now the first quarter of a periodic signal that looks like, say, a negative 
sinuous curve (figure 4a). Then, this pseudosignal is Fourier transformed into 
frequency domain via an FFT program. A low-pass Gaussian filter is used to isolate 
the mean flow ( v ( t ) ) .  The fitted smooth curve obtained from this calculation along 
with the prediction of ( 1 )  are shown in figure 4 ( b ) .  The spectrally fitted curve 
describes the mean flow adequately. The result is insensitive to the width of the filter 
as the respective spectral components of the mean flow and the fluctuations are well 
separated in the frequency domain. We now take the difference between the 
instantaneous velocity v( t )  and the mean velocity ( v ( t ) )  as the fluctuating velocity 
component v’(t), that is 

v ( t )  = ( v ( t ) )  +v’(t). (3) 
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FIGURE 4. Spectral curve fitting to extract fluctuations. The upper trace in figure 3 (a )  is used for 
illustration. (a )  Periodic signal construction for FFT. Reflections of the original trace are 
concatenated to construct a quasi-periodic mean flow suitable for FFT processing. ( b )  Raw signal, 
theoretical model for the mean flow (dashed line), and the spectrally fitted mean flow (solid smooth 
line). 

The fluctuation histories d ( t )  obtained from the traces in figure 3 are shown in figure 
5. The fluctuation amplitudes and frequencies are decreasing as the flows slow down. 
We propose below a scaling which should elucidate the nature of these fluctuations. 

4.2. Scaling 
Intense velocity fluctuations exist during the spin-down process as exemplified in 
figures 3 and 5 .  The amplitudes and frequencies of these fluctuations decrease as the 
flow decelerates. If the fluctuating velocity component v’(t) is scaled with the slowly 
decaying local mean velocity ( v ( t ) )  as 

W )  = v’ ( t ) / (v ( t ) )  (4) 

to underscore its relative amplitude, we find that the fluctuations are equally 
dominant during the whole spin-down process. However, the frequencies of these 
oscillations decrease as the flow slows down (figure 5 ) .  According to Taylor’s 

111.2 
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FIQURE 5. Raw fluctuations v'(t) extracted from figure 3 via spectral curve fitting. Green probe at 
(5, z )  = (-3.76 cm, 0) and blue probe at (5, z )  = (3.57 cm, 0). The traces correspond to those in 
figure 3. (a) 52, = x and ( b )  a, = 2x rad/s. 

hypothesis, for fixed-size eddies high frequencies are recorded by a stationary probe 
when the mean velocity is high and low frequencies when the mean velocity is low. 
During the spin-down process, observed frequencies therefore decrease if eddies of a 
persistent size are presumed present. To elucidate the use of this assumption, the 
time axes of the velocity fluctuations in figure 5 are rescaled using the spectrally 
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FIGURE 6. Reacaled velocity fluctuations v"(Z) during spin-down to rest as function of distance 
travelled 2 = JB(w(t ) )  dt. Green probe at (z, z )  = ( -  3.76 cm, 0) and blue probe at (z, z )  = (3.57 cm, 0). 
The traces correspond to those in figure 5. Pairs of arrows indicate signatures lagging each other 
by about xr (half a revolution). (a) Sa, = x and (b )  Sa, = 2x rad/s. 

fitted mean flows ( v ( t ) ) ,  such as that shown in figure 4(b) .  With the use of this new 
scaling 

d7 = ( Q ( t ) )  dt (5a) 

or, equivalently, dl = ( v ( t ) )  dt (5b) 
the initial regions of the raw traces in figure 5 are expanded and the final phases 
contracted. Note that ( v ( t ) )  = ( Q ( t ) )  r ,  hence, 1 = r~ at a given measurement 
location, where 7 is the arc traversed by the fluid and 1 the distance travelled. The 
results are shown in figure 6. The time axes in the figure are now the linear scales of 
the distance travelled by the mean flow at the probe location in the cylinder. 
Comparable spatial frequencies with comparable amplitudes are persistent in the 
flow. Presumably, that behaviour should persist indefinitely if the fluid domain were 
unbounded. Most of the ensuing discussions are based on the analysis, in particular 
on the spectral analysis, of the rescaled data. The fluctuation data are first rescaled 
as described in (4) and ( 5 )  (cf. figures 4, 5 and 6), and subsequently resampled into 
1024 equispaced intervals using linear interpolation, now as a function of the 
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FIQURE 7.  Normalized root-mean-squared fluctuation intensity B(r) in the cylinder during 
impulsive spin-down to rest. The data are normalized both for the amplitude and the time. The 
weighted averages are shown as circles. Measurements for x < 0 and x > 0 appear as closely spaced 
pairs. The line v(r) = 0.017R/r is a curve fit to data in the core region ( r / R  < 0.4) and ~ ( r )  = 0.045 
is the suggested uniform value in the buffer region (0.4 < r / R  < 0.8). 

distance travelled 1. All correlations and spectral estimations are calculated using 
FFT routines. Power spectral estimations are obtained using overlapping segments 
of data records like those shown in figure 6. The segments are passed through the 
Welch window for acceptable leakage in power spectral density (see, for example, 
Press et al. 1986). 

4.3. Fluctuation intensities 
Having invoked Taylor's transformation, we now examine the fluctuation intensities 
so scaled. The dimensionless time 7 is now defined as d7 = ( Q ( t ) )  dt and, equivalently, 
the distance 1 as dl = r (Q( t ) )  dt .  We define the dimensionless root-mean-squared 
(r.m.s.) fluctuation intensity @ as 

or, equivalently, as 

l T  i? = Jo v"(r)*dr 

l L  i? = Jo fi(1)2dl, 

where T = S d r  and L = Sdl are the scaled record lengths (cf. ( 5 ) ) .  The values for F 
are calculated from data such as those shown in figure 6 and are plotted in figure 7 
as a function of the radial position in the cylinder. The figure contains results from 
all realizations at Qi = K and 2~ rad/s except the few measurements very close to the 
ends of the cylinder (cf. figure l c ) .  The symbols in the figure are the weighted 
averages and the vertical bars show the range of scatter in individual measurements. 
The scatter in the data is not systematic, that is, the scatter does not show any 
identifiable dependence on the initial rotation rate Qi or on the axial position 2. 

Variations among realizations under identical conditions as well as between flows starting 
at sZi = K and 2n rad/s are not signi$cant. Our premise in using single transient 
experiments to infer the general statistics of the flow is the ergodicity of the scaled flows. 
The data in figure 7 support this assumption a posteriori. 

Even though the mean and fluctuation velocities a t  the centre become vanishingly 
small, the scaled fluctuations there are most dominant. A curve fit to the data in 
figure 7 suggests B x 0.017(R/r) dependence over the range r /R < 0.4 at the core. 
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Since the flow structures in the core are aligned with the rotation axis (cf. figure 2a), 
the azimuthal velocity measurements capture the most active component of the 
velocity vector there. The fluctuation intensity is more or less uniform over the range 
0.4 < r /R < 0.8, which acts as a buffeer region between the core and the flow over the 
concave wall. The value of B x 0.045 is a suggested constant value for the turbulence 
intensity in this buffer region. The flow over the cylindrical wall is predominantly 
azimuthal and the major axes of the LDV probe volumes are aligned with the mean 
gradient of the azimuthal velocity component, therefore the turbulence intensity 
measurements there suffer from poor spatial resolution. It is clear, however, that the 
flow maintains a uniform turbulence intensity during its adjustment from the axially 
aligned core to the azimuthally dominant perimeter. Correlations and spectral 
calculations below corroborate these results. 

4.4. Correlations 
The rescaled fluctuation traces v" in figure 6 are qualitatively similar not only between 
the simultaneous pairs but also between traces for Qi = x and 2x rad/s. This lends 
further support to our underlying assertion of the ergodicity of the flow. One can 
visually identify signatures that are slightly lagging each other on the simultaneous 
velocity pairs as marked in the figure. One can even estimate that lag to be about xr  
(half a revolution). Since the probes are located diametrically opposite each other, 
one concludes that the flow in the core consists of slowly varying structures that 
register comparable signatures at the probes as they move through the measurement 
locations. That provides support for our use of Taylor's frozen eddy hypothesis in the 
scaling of (5). Auto- and cross-correlations of &traces are calculated to elucidate the 
structure of the flow within the cylinder and some sample correlation plots are shown 
in figure 8(a+). Each frame in the figure contains the two autocorrelations 
corresponding to the green and blue probes, and their cross-correlation is shown in 
figures 8 ( a )  and 8 ( b ) .  Figure 8 ( a )  shows a sample in the vicinity of the cylindrical wall 
where the flow has a predominantly azimuthal structure. The two probes are on a line 
parallel to the axis of rotation and are a t  r/R = 0.91 and 0.5H apart. Their 
autocorrelations and cross-correlation are poor. The probes are essentially recording 
independent flow features. Figure 8 ( b )  shows clearly the Taylor-Proudman columns 
in the core of the cylinder and is as a quantification of the vertical structure pictured 
in figures 2 ( a )  and 2b). The two probes are in line a t  r /R = 0.54 and 0.5H apart in 
the z-direction. The persistent similarity between the two traces, which are recorded 
so far apart, indicates that the vortices present extend over large axial distances, 
probably from one end of the cylinder to the other. This result is independently 
arrived at  by Hopfinger et al. (1982) in their study of turbulence in a water 
tank. Figure 8 ( c )  shows the autocorrelations of the velocity traces in the core 
(x,/R = -0.23) and over the curved wall (x , /R = -0.91). The autocorrelation curve 
for the blue probe located in the core shows sinuous oscillations which are indications 
of the stable vertical vortical structures photographed in figures 2 ( a )  and 2 (b ) .  The 
autocorrelation of the green probe does not show any behaviour comparable to the 
blue one. The poor correlation essentially establishes the independence of the core 
flow from that over the concave wall. 

4.5. Power spectra 

Autopower spectra corresponding to the samples in figure 8 of the scaled data v" are 
shown in figure 9. The figure shows relative amplitudes in arbitrary units as a 
function of the wavenumber k for various regions of the flow. The wavenumber is 
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FIQURE 8. Autocorrelations R, and R, of the normalized data from the green (-) and blue 
(-----) p robes in various regions of the cylinder. Their cross-correlations R,, are also shown in (a) 
and ( b )  as traces displaced one t ic  mark along both axes. See figure 1 (c) for the corresponding probe 
locations. (a) Poorly correlated signals in the vicinity of the cylindrical wall. No discernible feature 
is identifiable in either the autocorrelations or the cross-correlation. The blue probe is at  (x /R,  y /R ,  
z / H )  = (-0.91,0, +0.25) and the green probe at  (x /R ,  y / R ,  z / H )  = (-0.91,0, -0.25). ( b )  Well- 
correlated signals from axially separated probes in the core, an indication of the axially coherent 
Taylor-Proudman columns. Simultaneous velocity traces from probes on a line parallel to the axis 
of the cylinder. The blue probe is at (x /R ,  y/R, z / H )  = (-0.53,0, +0.25) and the green probe a t  
(x /R ,  y / R ,  z / H )  = ( -0.54,0, - 0.25). (c) Poorly correlated signals from near the curved surface and 
the core of the cylinder. The green probe is over the cylindrical wall a t  (x /R ,  y / R , z / H )  = (-0.91, 
0, -0.38) and the blue probe in the vicinity of the centre at  (x /R ,  y /R ,  z / H )  = (-0.23,0, -0.08). 
The sinuous oscillations are on the autocorrelation curve for the blue probe which is located in the 
core. 
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non-dimensionalized locally as Bxrk, hence, 2xrk = 1 [log (2xrk)  = 01 corresponds to 
one wave per revolution at the probe location. That the flow visualization pictures 
in figure 2 show distinct regions in the cylinder, that the scaled fluctuation intensities 
in figure 7 in various regions of the flow show varying mean amplitudes, and that the 
correlations in figure 8 exhibit well-correlated flow regions in the core but poorly 
correlated regions over the concave wall suggest that the corresponding power 
spectra should exhibit distinguishable behaviour in various regions. The autopower 
spectra curves in figure 9 ( a )  correspond to the flow over the concave wall, the 
correlations of which are shown in figure 8(a) .  The power spectra show a slow 
dependence on the wavenumber k. The power spectra of the flow in the core, shown 
in figure 9 ( b ) ,  however, is clearly different than those a t  the perimeter. The 
fluctuation amplitudes show a faster decay rate with the wavenumber k. The 
corresponding correlation plots in figure 8 ( b )  show strong axial correlation in the 
core. The double peak in the spectra, observable in this particular sample and also 
evident in the correlation plot in figure 8 (b) ,  corresponds to pairing of vortices during 
the evolution of the flow towards a single concentrated vortex, as discussed below. 
Figure 9 ( c )  shows autospectra for the flow in the core and a t  the perimeter 
and corresponds to the conditions in figure 8 ( c ) .  The blue probe is in the core 
(xb/R = -0.23) and the green probe near the cylindrical wall (s,/R = -0.91). The 
spectrum of the velocity trace recorded by the blue probe shows a faster decay rate 
with k while the simultaneous trace recorded by the green probe exhibits a slower 
decay. Figure 10 shows the estimated kPn dependency of the power spectra of the 
scaled velocity fluctuations in the cylinder. The exponent n is determined from a 
least-squares curve fit to spectral curves like those shown in figure 9 for 2nrk > 2. The 
vertical bars in the figure indicate the extreme values. The scatter reflects the 
dependence on the axial position. The average value for 418 flows used to construct 
the figures is about 2.6T0.7. The amplitude of power spectra decreases more rapidly 
with the wavenumber in turbulence in the cylinder than the homogeneous turbulence. 

4.6. Concentrated vortex 
An obvious question brought up by the scaling used to arrive at figure 6 from figure 
5 (equation (4)) is the nature of the eventual decay of the flow. During the decay, as 
the eddy size increases, its growth will no longer be unrestricted when its size 
becomes comparable to  that of the cylinder. We observe that the last phase of the 
flow tends to a single vortex in the core, not necessarily coaxial with the cylinder. The 
evidence for this behaviour is present in both the flow visualization experiments and 
the velocity measurements. An example may be seen on the lowest trace in figure 
3 (b ) ,  or equivalently in its resealed forms, on the lowest traces in figures 5 and 6. The 
quasi-periodic signal seen after about 120 s on the last trace in figure 3 ( b )  is evidently 
the signature of a precessing vortex. That signature is most clearly identifiable on the 
corresponding resealed trace in figure 6 (a) .  

Figure 11 shows instantaneous angular velocity profiles (Q(r /R,  s))/Q, in the 
cylinder at selected times s = 0.69(2R/H) EfQi t .  The data points in the figure are 
averages over one-revolution segments of the velocity histories starting a t  
dimensionless times s = 0.10, 0.25, 0.50, 1.9, and 1.8. The figure is constructed from 
all measurements for 0, = x and 2n rad/s, except the few measurements close to the 
end disks (cf. figure l c ) .  The initial condition of solid-body rotation at  s = 0 
corresponds to (s2)/Qi = 1. Solid-body rotation during spin-down would result in 
uniform (Q)/Q, values for fixed values of s (cf. (1) ) .  The figure does not provide a 
uniform support for this assertion. It does, however, indicate that the core region 
may be looked upon as slowing down like a solid body, which is sufficient for the 
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FIGURE 9 (a ,  b) .  For caption see facing page. 

acceptability of the model of (1)  to obtain a timescale for the mean flow. The flow at 
its mature stage tends t o  a single vortex, as indicated by the profiles plotted for s = 
0.5, 1,  and 1.8. The angular velocity (Q(r/R,s)) is higher at the centre and 
monotonically decreases outward. The data a t  s = 0.5 and 1.0 in the figure suggest 
a vortex, the core of which is in solid-body rotation. 
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2 

FIGURE 9. Autopower spectra of normalized data from the green (-) and blue (-----) probes 
in various regions of the cylinder. The normalized data are divided into overlapping segments and 
windowed using Welch window (Press et al. 1986). (a) The flow over the concave wall. The 
corresponding correlations are shown in figure 8(a )  above. Note the slow decpy rate of about k-l .  
(b) Flow in the core. The power spectra show a faster decay rate of about k-3. The corresponding 
correlations are shown in figure 8 ( b ) .  (c) Power spectra of simultaneous velocity traces in the core 
an? buffer,regions. Note the slower decay rate with the wavenumber in the buffer region. The lines 
k-5 and k-8 are drawn for reference. The flow corresponds to that in figure S(c). 

The photograph in figure 12 provides visual evidence for the development of a 
single vortex during the last phase of spin-down. The picture is taken in water at  
t = 90 s and 52, = 9.77 rad/s (s = 1.8 and E, = 9 x lo-'). It shows the footprint of a 
flow field, the local angular velocity of which is higher a t  the centre than at its 
perimeter, that is, a concentrated vortex. We base our conclusion on the observation 
that the flow at the centre shows a turbulent signature a t  the centre despite the calm, 
therefore presumably a laminar signature over most of the disk surface. The flow a t  
the centre must have a substantially higher angular velocity to maintain an unstable 
signature against an incoming laminar secondary flow. 

5. Conclusions 
We have presented an experimental study of the flow in a closed cylindrical cavity 

during impulsive spin-down to rest. The flow exhibits instabilities at numerous 
levels. Our interest here is in the unsteady motion of the fluid outside the boundary 
layers. The nature of the experiment makes the use of conventional averaging 
techniques inordinately time consuming. We have circumvented this difficulty by 
making a spectral curve fit to the time-series velocity traces. The mean flow and the 
fluctuations are separated in the frequency domain. The spin-down timescale of the 
mean flow is sufficiently larger than that of the fluctuations to  make the spectral 
curve fitting acceptable. The results are insensitive to the cutoff frequency used in 
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FIGURE 10. The exponent ?z of the curve fit k-” to the power spectra of the scaled velocity 
traces for 2nrk > 2. The vertical bars indicate the range of the scatter in n. 
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FIQURE 11. Instantaneous angular velocity profiles (Sa(r/R,e))/Sd, in the core during the final 
phase of spin-down to rest. Data points am averages over one-revolution segments of the velocity 
histories starting at dimensionless times 5 = 0.1, 0.25, 0.5, 1.0, and 1.8. 

this method. The absolute amplitude of fluctuations decrease monotonically as the 
flow decelerates. When these fluctuations are scaled with the current mean velocity 
to obtain the relative fluctuations, we observe that their magnitudes remain 
approximately constant during the spin-down. Further, following Taylor’s hy- 
pothesis, if the time is scaled with the current mean velocity, we note that the 
spectral content of these fluctuations remains similar during all phases of the flow. 
Some statistical properties of the flow are extracted from the velocity histories 
rescaled both in time and amplitude. The underlying assumption is the ergodicity of 
the flow ; that is, one realization of the flow carries sufficient information to estimate 
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FIQURE 12. End view of cylinder at t = 90 s (s = 1.8, E, = v/s2R2 of 9 x lo-' cf. figure 2). The flow 
tends to a single vortex, that is, higher angular velocity at the central zone as evidenced by a 
quiescent perimeter surrounding a wavy centre. note the contrast between the end view here and 
that in figure 2 ( d ) .  

its statistics. This assumption is checked and substantiated by comparing the results 
obtained from successive realizations under similar conditions. 

The conclusions derived are based on simultaneous azimuthal velocity measure- 
ments with two independent laser-Doppler velocity probes. The results are 
corroborated by flow visualization studies. The flow domain may be separated into 
distinct regions: a core that on average slows down like a solid body; the two 
turbulent Bodewadt layers over the disks which maintain the circulation within the 
cylinder ; the concave wall where Taylor-Gortler vortices are the dominant feature ; 
and a buffer region at  the perimeter, between the core and the vortices over the 
concave wall. Our interest is in the core and the buffer regions. Strong vertical 
correlations at  large separations during spin-down indicate a nearly two-dimensional 
structure. This is further substantiated by flow visualization experiments. The scaled 
fluctuation intensities suggest an r-l behaviour in the core and are uniform away 
from the core through the buffer region but outside the region of Taylor-Gortler 
activity near the cylindrical wall. Power spectra in the cylinder suggest an n = - 2.6 
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power dependence on the wavenumber k. Strong axial correlations, especially during 
the final phases of the flow, lead us to believe that the flow has a tendency to form 
a large single vortex as it matures. We consider this behaviour as evidence in favour 
of the hypothesis of vorticity expulsion from the core in a decelerating body of 
rotating fluid. We also speculate on the probable similarity of the spectral nature of 
the turbulence in the core to that in large eddies in turbulent shear flows. These large 
eddies are essentially concentrated vortical entities. More specifically, they are 
characterized by vorticity in a predominant direction. We expect that the turbulence 
characteristics are anisotropic. In  particular, turbulence along the direction of 
predominant vorticity should decay faster than that in the transverse directions. The 
similarity to spin-down ought to be sought in the spectral contents of turbulence in 
those structures. 

I thank Mr Mahboob Alam for his help during the experiments. This work was in 
part supported by NSF Grant MSM-8805892. 
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